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Abstract-A simple but accurate approximate analytical method based on a linearization of the energy 
equation is developed for the area mean Nusselt number for free convection heat transfer from isothermal 
spheres for the range of Kayleigh number 0 < Ra < lo8 and all Prandtl numbers. In the process of 
linearization, the energy equation is reduced to the form of the transient heat conduction equation for 
which the solution exists. Comparison of the final correlation of Nu against Ra (which is an explicit form 
of linear superposition of the diffusive limit and boundary layer solution) with other correlation and 

experimental air data reveals very good agreement with a maximum difference of less than 5%. 

INTRODUCTION 

LAMINAR natural convection heat transfer from iso- 

thermal spheres has been the subject of numerous 
analytical, computational and experimental inves- 
tigations. This is due to the fact that a sphere presents 
an important geometry for the study of free con- 
vection flow in many engineering applications (spheri- 
cal storage tanks, packed beds of spherical bodies, 
etc.). Many of the above mentioned investigations 
have been reviewed by Clift et al. [1] and Churchill 
[2], and also in a recent paper by Lo Choy and 
Yovanovich [3]. 

In general, the experimental approach has the 
capability of supplying realistic heat transfer data; 
however, it is time consuming and expensive. Numeri- 
cal solutions are also expensive and require a wide 
computational effort to be implemented. Since obtain- 
ing complete exact solutions of the boundary layer 
momentum and energy equations presents an imposs- 
ible task for general cases, theoretical studies of free 
convection have mainly been focused on approximate 
solutions. They include integral [4, 51 and per- 
turbation [6, 71 methods, and asymptotic solutions 
for small and large Grashof, Gr, and Prandtl, Pr, 

numbers [8, 91. 
While such theoretical studies have produced valu- 

able and interesting results, they are limited either 
to the diffusive regime (GrPr = Ra < lo-*; see 
Yovanovich [lo]) or to the range of Rayleigh numbers 
for which the postulate of laminar boundary layer 
theory is applicable (lo4 < Ra < 10’ ; see Merk and 
Prins [4] and Chiang et al. [l 11). Although a few 
researchers have tried to extend their schemes for the 
transition from the diffusive regime to the laminar 
regime (10m4 < Ra < 104; see Lo Choy and Yov- 
anovich [3]), they have had less success in obtaining 
the final result in an explicit form. 

The objective of this study is to present a new 

approximate analytical method to predict external 
natural convection heat transfer from isothermal 
spheres for a wide range of Rayleigh numbers 
0 < Ra < lo8 and all Prandtl numbers, 0 < Pr < CO. 

The present study will adopt a simple analytical 
method based on linearization of the energy equation 
as well as the usual assumptions made for natural 

convection problems, i.e. the boundary layer and 
Boussinesq approximations. In the process of linear- 
ization, the energy equation will be reduced to the 
form of the transient heat conduction equation. These 
simplifications make otherwise intractable equations 
amenable to analysis and open a new door to the 

solution of external natural convection problems. 

THEORETICAL ANALYSIS 

In processes dealing with free convective heat trans- 
fer, the temperature field is linked with the flow ; there- 
fore the nonlinear momentum and energy equations 
are coupled through the variation of the density. To 
allow a more convenient procedure for obtaining 
approximate solutions to these nonlinear, coupled 
governing equations, several simplifying assumptions 
and various approximation schemes will be used. 
Boussinesq and boundary layer approximations, as 
mentioned earlier, are the two widely used simplifying 
approximations in modeling natural convection heat 
transfer. 

Another method of simplification, which will be 
exploited in this work, involves modification of the 

inertial (convective) terms, i.e. V*V( ). Oseen first 

suggested that the inertial terms pV - VV in the 
momentum equation could be uniformly approxi- 
mated by the term pV, * VV [12]. Following this linear- 
ization, Oseen was able to obtain an approximate 
solution to the Navier-Stokes equations for creeping 
flow past a sphere. Subsequently, several researchers 
have worked on Oseen’s equations to obtain : 
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NOMENCLATURE 

A sphere surface area [m”] V, effective velocity given by equation (27) 
d constant coefficient [m s- ‘1 

CP specific heat at constant pressure .Y distance along the surface [m]. 
[kJkg-‘K’] 
sphere diameter [m] 

y(Pr) function of Pr 
Greek symbols 

gravitational acceleration [m s- ‘1 
; 

thermal diffusivity, k/pc, [m* s- ‘1 
9 
Gr, Grashof number, gB(T,-- T,,)Z’/v’ 

volumetric expansion coefficient [K- ‘1 

4 
h heat transfer coefficient [W m- *K ‘1 

thermal boundary layer thickness [m] 

I( thermal conductivity [W m- 1 K- ‘1 
c1 dynamic viscosity [kg m- ’ s- ‘1 
Y kinematic viscosity, ,u/p [m’s_ ‘1 

_Y characteristic length of the body fm] P mass density [kg m- 3]. 
?I constant power 

NUY Nusselt number, h_%“jk 
Pr Prandtl number, v/cl 

Subscripts 

Y heat flux [W m- *] 
D based on D, as the characteristic length 

Ray Rayleigh number, Gr,Pr 
“T based on 2, as the characteristic length 

time [s] 
S at the surface 

t 

T temperature [K] 
00 at points far from the body. 

AT’ temperature rise, T- T, [K] 
T* dimensionless temperature rise, Superscripts 

U-- T,)I(T,- T,) 0 at Raor Pr-+O 

Vi velocity component in ith direction an averaged quantity 

(i denotes different coordinate M3 at very large Prandtl numbers. 

directions) [m s- ‘1 
V velocity [m so ‘1 Coordinates 
V, characteristic velocity given by equation x, y, z Cartesian coordinates 

(13) or (21) [ms-‘1 r, B. cp spherical coordinates. 

l results with higher order approximations [13, Neglecting conduction in the %-direction, and using 

141; the equality 
l solutions of forced convection heat transfer from 

isothermal spheres and cylinders [15-l 71; and 
3T t3’T 

-0 
l a matched solution of inner and outer expan- 

& =: ;@ - (2) 

sions of their perturbation schemes in free convection due to the s~metry of the problem, the above energy 
16, 181. equation becomes 

In this work, the extension of the Oseen modi- 
fication to the convection terms of the energy equation 
in free convection will be studied. 

Linearizalion of energy equation 
Consider an isothermal sphere of temperature T,, 

and diameter I), which is immersed in an extensive, 
quiescent medium at constant temperature T, as 
shown in Fig. 1. For this time-steady, small scale 
problem with zero heat generation and relatively large 
temperature difference, for which the Eckert number 
can be taken as zero, one can write the simplified 
constant property energy equation in the spherica 
coordinate system (r, 8, 9) as follows : 

dT v,aT L 

v’Z+YaB+rsin%84r, 

a aT +7iizm ( > 1 a2T 
sin%= + 1 zaa(p2’ (1) 

FIG. 1. Spherical polar coordinate system 
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The two terms on the left-hand side of equation (3) 

are further approximated by a single equivalent term, 
(V,/r)(aT/80), where I’, is some constant effective vel- 
ocity yet to be determined. Therefore, the linearized 
energy equation can be written as 

in the region : 

r > D/2, 0 < ti < n. 

Transient conduction-type equation and its solution 
For large Grashof numbers (Gr > lo“), heat trans- 

fer occurs in a thin boundary layer, therefore r in 
the advection term appearing on the left-hand side 

of equation (4) can be approximated by D/2. Let 
k/p, = CC, thermal diffusivity ; x = D0/2, distance 
along the surface from the stagnation point, and 
t = x/V, = D0/2V,, the effective particle residence 
time. The linearized energy equation, equation (4), 
can therefore be written as 

(5) 

where 

raD/2, O<t<nD/2V, 

and T* is the dimensionless temperature rise, 
(T- Tm)/(T,- T,). The solution to equation (5) is 

1191 

(6) 

which consists of the linear superposition of the 
steady-state solution, D/2r, and the transient solution. 
The local Nusselt number, Nu,(Q), defined as h(@D/k, 
is related to the local wall heat flux and the overall 
temperature rise as follows : 

qsD 
NuD(e) = (T, _ T,)k’ (7) 

The wall heat flux, qs, is determined from the Fourier 
rate equation 

qs = -k(T,-T,)aT* 
ar r=D,2 

(8) 

which gives 

Previous works on free convection suggest that the 
investigation be split into two different studies. One 

study should be concerned with very small Prandtl 
numbers (Pr CC 1), while the other should pertain to 
very large Prandtl numbers (Pr >> 1). In each part, 
first the characteristic velocity for each limit will be 
given and then the possibility of using this character- 
istic velocity as the effective velocity will be inves- 
tigated through a simple analysis. 

The wall heat flux, equation (9), consists of the Small Prandtl numbers (Pr << 1). For very small 

linear sum of two asymptotes : the steady-state value Prandtl numbers buoyancy and inertial forces must 
and the transient solution for a half-space. Sub- be of the same order of magnitude ; thus one can show 

stituting for q9 in equation (7), and setting t = De/2 V,, 
one obtains the local Nusselt number : 

iv%(Q) = 2+Ic)Jg$). (10) 

Thus, the area-averaged Nusselt number, Nu, = 
(l/2) s; Nu,(B) sin 0 de, becomes : 

NuD =2+0.714 (11) 

It is worthwhile noting that equation (11) at this 
point is applicable to both forced and free convection 
heat transfer. This, of course, depends on the type of 
transformation equation to be used for the effective 
velocity, V,, which will be discussed next. 

Transformation equation for effective velocity, V, 
The type of transformation equation to be used for 

the velocity, V,, which is a characteristic of the flow 
field around the body, will determine the type of con- 
vective heat transfer correlation that results. Before 
proceeding to the analysis of the problem and the 
procedure to obtain the constant effective velocity, let 
us see what this velocity actually represents. In the 
case of forced convection, clearly, the effective velocity 
could be some fraction of the ‘free stream’ velocity 
which is considered constant and uniform (or aver- 
aged) over the surface of the body. However, in free 
convective boundary layer problems, although there 
is no such thing as ‘free stream’ velocity (or it is 
actually zero), this effective velocity could still rep- 
resent some constant velocity which may be the result 
of averaging the velocity over the boundary layer 
thickness as well as over the surface of the body. Of 
interest to this study is free convective heat transfer 
from spheres, the development of the velocity trans- 
formation equation which will be discussed now. 

Assuming Gr, > lo“, the fluid motion is confined 
to a thin boundary layer ; therefore the basic equation 
for this part of the analysis is the boundary layer 
momentum equation (&component) expressed in 
spherical coordinates [20] : 

v,~+~~=r$$+gBsintI(T-7.,). (12) 
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through scale analysis that the characteristic velocity 
is [21, 221 

V, = J(sBATD). (13) 

Since the thermal boundary layer is much thicker 
than the velocity boundary layer for cases of very 
small Prandtl numbers, AT is close to (T, - Ta). This 
is more obvious if one divides the whole boundary 
layer into two regions-inner and outer regions- 

and uses the so-called double-boundary layer concept 

1231. 
On the other hand, one can start with the momen- 

tum equation, equation (12), and attempt to find the 
velocity averaged over the surface of the sphere. Then, 
for cases of very small Prandtl numbers, a balance of 
buoyancy and inertial forces simplifies equation (12) 
to 

au, 1’0 au, 
~,~+~~=g/?ATsin0. (14) 

If the two terms on the left-hand side of equation 
(14) are approximated by the single equivalent term, 
(v,/(D/2))(dv,/dO), one may use the following steps to 

get the area-averaged velocity, V: 

x dv” = gfiATsin 0 
D/2 d0 (15) 

dv; 
~ = gj?ATD sin 0. 
dO (16) 

Integration of equation (16) with the condition that 
a0 = 0 at 0 = 0 gives : 

s 

” 
OH’ = gflATD sin 0 d0 (17) 

II 

or 

v0 = J(g/lATD)(l -cos@‘!‘. (18) 

Taking the average over the total surface area, 

uo dA, (19) 

gives 

V = 0.943J(gjJATD) (20) 

which is almost the same as V,, equation (13), found 
above. Thus, using the characteristic velocity instead 
of the effective velocity required in equation (11) could 
be a reasonable estimate of the effective velocity for 
very small Prandtl numbers. 

Large Prandtl numbers (Pr >> 1). For very large 
Prandtl numbers buoyancy forces must be of the same 
order of magnitude as viscous forces ; then one can 
obtain the following expression for the characteristic 
velocity through scale analysis [21, 221 : 

v, +L!!). (21) 

In this case, the velocity boundary layer is much 
thicker than the temperature boundary layer; in the 
temperature boundary layer the velocity grows rap- 
idly and reaches its maximum value near the outer 
edge of the temperature boundary layer. Thus, AT 
would be between 0 and (T, - T,) in this inner region 
(the region between zero and maximum velocity), or 
taking its mean value :(Ts - T,). This inner region is 
known to be the driving region, which is why it is 
considered here. 

To see how well this characteristic velocity rep- 
resents some kind of averaged velocity over the 
surface, we will follow Merk and Prins’ [4] argument 
and equate the buoyancy force to the viscous drag for 
large Prandtl numbers for a slab of unit height of the 
boundary layer. The buoyancy force in the boundary 
layer is proportional to the temperature difference. 
Taking its mean value as f( T, - T,), the upward force 
on the slab, supposed to have approximately the thick- 
ness 6,, is $g,gB(T,- T,)h, when sin0 is not very 
different from 1. However, as was pointed out earlier, 
the velocity v decreases almost linearly in the thermal 
boundary layer to its zero value at the wall, where it 
causes a drag pG/is, (which is an approximation for 
p(&/&) at the wall). Equating the two forces for 
steady flow one obtains 

0 = :gB(Ts - T,,)@/K (22) 

Merk and Prins [4] suggested the following equa- 
tion for S, by considering the diffusion of heat per- 
pendicular to the wall into the fluid moving with an 
average upward velocity C : 

Substituting for S: in equation (22) gives 

ii= gB(Ts - TAD d 2Pr > 
(24) 

which is the same as equation (21) found for the 
characteristic velocity, V,, when :(T, - T,,) is sub- 
stituted for AT. 

Efective velocity for all Prandtl numbers. Recall 
equations (13) and (21) obtained for the two limits : 

Pr + 0, V,” = J(g/lATD) 

and 
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Based on the above equations, valid for small and 
large Prandtl numbers, and using the Churchill and 

Usagi [24] blending technique, one may obtain the 
following equation for the effective velocity applicable 
for all Prandtl numbers : 

1 1 1 
-=(v,O)“+(v,Z),. 
(VJ” 

(25) 

Therefore, the effective velocity can be determined 
from the following blended equation : 

VP 
ve = -cI+~~~l’;n. (26) 

Substituting for V,” and V,” into equation (26) gives 
the effective velocity valid for all Prandtl numbers 

$GrJZPr)‘. 

(27) 

where a value of 9/S can be used for n as recommended 
by Churchill and Chu [25] for their f(B). 

RESULTS AND DISCUSSION 

Substituting the effective velocity of equation (27) 
into equation (1 I), the area-averaged Nusselt number, 
Nu,, becomes 

Nu, = 2+ ,l :gid/q 
(28) 

where a value of 9/S is used for n as mentioned earlier. 
A few remarks should be made regarding the form 

and the constants of equation (28). First of all, the 
form of the equation, namely 

NM, = Nu$ +df (Pr)RaJ4 (29) 

was not forced to this format to fit the experimental 
data [26] or to have Nu$ as a correction to account 
for curvature effects [27]. Rather, this is simply the 
explicit form of the end result of the present analysis. 

Moreover, it has the correct diffusive limit, 
NM: = 2.0, representing the contribution of the 
molecular diffusion into an infinite, stagnant fluid 
which corresponds to Rayleigh numbers approaching 
zero. 

Now let us examine the asymptotic values of the 
area-averaged Nusselt number for small and large 
Prandtl numbers in the laminar boundary layer 
regime. From equation (28) one can obtain 

and 

NM 0 = 0.714Ra’i4Pr’i4 Pr + 0 n (30) 

Nu, = 0.600Ra~“ Pr + co. (31) 

These limiting values for Nun are independent of the 

value of it. 
Clearly, the two equations for Nu, found above are 

consistent with the results of dimensional analyses for 
small and large Prandtl numbers [23]. In addition, the 
constant of 0.600 (for Pr -+ co) and 0.714 (for Pr -+ 

0) are in good agreement with previously found 
asymptotic values. Churchill [2] reported 0.603 (Chur- 
chill’s calculation was based on the analysis of Chiang 
et a/. [l 11) and Stewart [28] 0.589 for large Prandtl 
numbers, while for small Prandtl numbers, Churchill 
[2] has 0.727 in his correlation and the Raithby and 
Hollands [29] correlation gives 0.703 as the asymp- 
totic value. 

Finally, in Fig. 2, the predictions of free convective 
heat transfer based on equation (28) are compared 
with the results of a prior correlation [2] 

as well as Chamberlain’s [30] quasi-steady state exper- 
imental air data. The comparison reveals that the 
results of the present study are in very good agreement 
with the experimental data with a maximum difference 
of 4.3% (which is within the maximum error bounds 
of the experimental data, reported as 6% [30]) and 
r.m.s. of the differences of 0.25. 

SUMMARY AND CONCLUSIONS 

A new simple but accurate approximate analytical 
method is developed for the mean Nusselt number for 
free convection from isothermal spheres for the range 
of Rayleigh numbers 0 < Ra < 10’ and all Prandtl 
numbers. The proposed method is novel not only 
because of the linearization of the convective terms in 
the energy equation, but also for the method of solving 

the problem, i.e. transforming the governing equation 
into a transient conduction-type equation. The latter 

FIG. 2. Comparison of the present study’s results with exper- 
imental data and other correlations. 
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technique provides a method of reducing a convective 
problem to a simpler conduction one, for which the 
solution exists. In addition, the final result, a cor- 
relating equation of Nu against Ra, equation (28), 
which is a linear superposition of the diffusive limit 
and laminar boundary layer limit, was derived 
through analysis and it was not forced to this format. 
It also has the correct diffusive limit (NUT = 2), as 
well as the proper asymptotic values for small and 
large Prandtl numbers, equations (30) and (31). The 
present study also addresses the correlating equation 
of the velocity in the free convective boundary layer 
as a function of Prandtl number, which by itself is a 
new subject. Although it uses a simple correlating 
equation for the velocity, the comparison of the result- 

ant Nu-Ra correlation with other correlation and 
experimental data shows very good agreement, with 
a maximum difference of less than 5 %. 
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CONVECTION NATURELLE THERMIQUE LAMINAIRE AUTOUR DE SPHERES 
ISOTHERMES : UNE NOUVELLE METHODE ANALYTIQUE 

R&un&Une mCthode analytique approch&e, simple mais p&&e, bas& sur la lin&arisation de l’kquation 
de I’Bnergie, est dt-veloppte pour le nombre de Nusselt moyen relatif 5 la convection naturelie thermique 
laminaire autour de sph&es isothermes, pour le domaine de nombre de Rayleigh 0 < Ra < IO’ et pour 
tout nombre de Prandtl. Dans le procidk de linbarisation, l’kquation d’&nergie est r&d&e $ la forme d’une 
tquation de conduction thermique pour laquelle la solution existe. Une comparaison de la formule finale 
de Nu en fonction de Ra (qui est une forme explicite de superposition linkaire des solutions limites de 
diffusion et de couche limite) avec d’autres formules et donnees expbrimentales sur l’air r%le un tr6s bon 

accord, avec une diff6rence maximale infkrieure $50/b. 

EIN NEUES ANALYTISCHES VERFAHREN ZUR BEHANDLUNG DER LAMINAREN 
FREIEN KONVEKTION AN ISOTHERMEN KUGELN 

Zusammenfussung-Eine einfache und zugleich prlzise analytische Nliherungsmethode, die auf einer Linear- 
isierung der Energiegleichung beruht, wurde fiir die Bestimmung der fliichengemittelten Nusselt-Zahl bei 
freier Konvektion an isothermen Kugeln entwickelt, und zwar fiir Rayleigh-Zahlen im Bereich 0 < Ra < lo8 
und alle Prandtl-Zahlen. Durch die Linearisierung wird die Energiegleichung auf die Form der instationgren 
W~rmeleitungsgleichung reduziert, fiir die eine Liisung existiert. Es wit+ ~hl~efllich eine Korrelation von 
NM abhingig von Ra gebildet, welche eine explizite Form der linearen Uberlagerung des Grenzfalls reiner 
Leitung und der Grenzschichttiisung ist. Ein Vergleich mit anderen Korrelationen und mit experimentell 

gewonnenen Daten fiir Luft zeigt sehr gute iibereinstimmung innerhalb weniger als 5%. 

JIAMMiHAPHbIR CBO6O~HOKOHBEKTHBHbi~ TEIIJIOIIEPEHOC OT 
M30TEPMMYECKMX CQIEP, HOBbIfi nP~B~H~EHHb1~ AHAJTHTH9ECKHfl METOg 

~oT~Pa3pa6~aH npcxxoii npH6~~~eH~ ~~~T~~~KH~ Meron AASI O~~A~eH~K cpemero 

II0 EJIOEWAH ~HCJia HycceAb-ra ~p~CBO6O~OXOHBeKT~BHOM TeIIJIOtR?p4+HOCe OT H30T~MA‘ieCXZiX C@p 

Am =mzeA PefiHoAbAca, W3MeHnmqexcR B Auanasoee O<Ra< 10' H ncex YHC~JI IIpaHATAn. Me~oa 
OCHOBaH HanHHeapa3armn ypaBHeHHI3Hepr~‘HR,npHBOnHMOrOKHecTauHoHapHoMyypaBHeHuH,Te~on- 
~OBOAHOCTU, anr KOTO~O~O C~IWCTB~~T pemeeee. CpaBHeHHe nonpemofi 3amcHMocw Nu OT Ra 
@~ACTaBAKlOLlJHir COtiOii AHHeiiHyEO CyIlepIIO3HUHlO ASi44y3UOHHO~O IIPeAeAbHOrO CAy'iaX i4 peIIleHHIl 

AJI5l IlO~paHWIHO~O CJIOK)C Apyl-HMH 3BBNCHMOCTSMH B 3KCnepHMeHTWIbHbIMH AaHHbIMH AAX BO3Ayxa 

IIOKa3MBXT OYeHb XOpOuIeeCOI-J,aCHeCMaKCHMaAbHbIM paCXOWeHHeM MeHe‘Z 5%. 


